A novel meiosis-specific protein of fission yeast, Meu13p, promotes homologous pairing independently of homologous recombination.
نویسندگان
چکیده
Meiotic homologous pairing is crucial to proper homologous recombination, which secures subsequent reductional chromosome segregation. We have identified a novel meiosis-specific protein of fission yeast Schizosaccharomyces pombe, Meu13p, to be a molecule that is required for proper homologous pairing and recombination. Rec12p (homologue of Saccharomyces cerevisiae Spo11p), which is essential for the initiation of meiotic recombination, is also shown for the first time to participate in the pairing process of S.pombe. Meu13p, however, contributes to pairing through a recombination-independent mechanism, as disruption of the meu13(+) gene reduces pairing whether the rec12(+) gene is deleted or not. We also demonstrate a dynamic nature of homologous pairing in living meiotic cells, which is markedly affected by meu13 deletion. Meu13p is not required for telomere clustering and the nuclear movement process, which are well known requirements for efficient pairing in S.pombe. Based on these results, together with the localization of Meu13p on meiotic chromatin, we propose that Meu13p directly promotes proper homologous pairing and recombination.
منابع مشابه
A Cytoplasmic Dynein Heavy Chain Is Required for Oscillatory Nuclear Movement of Meiotic Prophase and Efficient Meiotic Recombination in Fission Yeast
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the...
متن کاملFinding the Correct Partner: The Meiotic Courtship
Homologous chromosomes are usually separated at the entrance of meiosis; how they become paired is one of the outstanding mysteries of the meiotic process. Reduction of spacing between homologues makes possible the occurrence of chromosomal interactions leading to homology detection and the formation of bivalents. In many organisms, telomere-led chromosome movements are generated that bring hom...
متن کاملGenetic interactions between the chromosome axis-associated protein Hop1 and homologous recombination determinants in Schizosaccharomyces pombe.
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion...
متن کاملThe meiotic bouquet promotes homolog interactions and restricts ectopic recombination in Schizosaccharomyces pombe.
Chromosome architecture undergoes extensive, programmed changes as cells enter meiosis. A highly conserved change is the clustering of telomeres at the nuclear periphery to form the "bouquet" configuration. In the fission yeast Schizosaccharomyces pombe the bouquet and associated nuclear movement facilitate initial interactions between homologs. We show that Bqt2, a meiosis-specific protein req...
متن کاملDynamics of chromosome organization and pairing during meiotic prophase in fission yeast
Interactions between homologous chromosomes (pairing, recombination) are of central importance for meiosis. We studied entire chromosomes and defined chromosomal subregions in synchronous meiotic cultures of Schizosaccharomyces pombe by fluorescence in situ hybridization. Probes of different complexity were applied to spread nuclei, to delineate whole chromosomes, to visualize repeated sequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 20 14 شماره
صفحات -
تاریخ انتشار 2001